Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana.
نویسندگان
چکیده
Nucleosomes package eukaryotic DNA and are composed of four different histone proteins, designated H3, H4, H2A, and H2B. Histone H3 has two main variants, H3.1 and H3.3, which show different genomic localization patterns in animals. We profiled H3.1 and H3.3 variants in the genome of the plant Arabidopsis thaliana and found that the localization of these variants shows broad similarity in plants and animals, along with some unique features. H3.1 was enriched in silent areas of the genome, including regions containing the repressive chromatin modifications H3 lysine 27 methylation, H3 lysine 9 methylation, and DNA methylation. In contrast, H3.3 was enriched in actively transcribed genes, especially peaking at the 3' end of genes, and correlated with histone modifications associated with gene activation, such as histone H3 lysine 4 methylation and H2B ubiquitylation, as well as RNA Pol II occupancy. Surprisingly, both H3.1 and H3.3 were enriched on defined origins of replication, as was overall nucleosome density, suggesting a novel characteristic of plant origins. Our results are broadly consistent with the hypothesis that H3.1 acts as the canonical histone that is incorporated during DNA replication, whereas H3.3 acts as the replacement histone that can be incorporated outside of S-phase during chromatin-disrupting processes like transcription.
منابع مشابه
Differential association of Arabidopsis telomeres and centromeres with Histone H3 variants
Two different groups, using ChIP-seq data, have recently published the genome-wide distribution of histones H3.1 and H3.3 in Arabidopsis thaliana. In one report, Stroud and colleagues determined that, whereas H3.1 was enriched in repetitive pericentromeric and silent chromatin, H3.3 was enriched in transcriptionally active regions. This work was performed using seedlings, which contained dividi...
متن کاملDynamic Deposition of Histone Variant H3.3 Accompanies Developmental Remodeling of the Arabidopsis Transcriptome
In animals, replication-coupled histone H3.1 can be distinguished from replication-independent histone H3.3. H3.3 variants are enriched at active genes and their promoters. Furthermore, H3.3 is specifically incorporated upon gene activation. Histone H3 variants evolved independently in plants and animals, and it is unclear whether different replication-independent H3.3 variants developed simila...
متن کاملGenome-Wide Analysis of the Chromatin Composition of Histone H2A and H3 Variants in Mouse Embryonic Stem Cells
Genome-wide distribution of the majority of H2A and H3 variants (H2A, H2AX, H2AZ, macroH2A, H3.1, H3.2 and H3.3) was simultaneously investigated in mouse embryonic stem cells by chromatin immunoprecipitation sequencing. Around the transcription start site, histone variant distribution differed between genes possessing promoters of high and low CpG density, regardless of their expression levels....
متن کاملDynamic Replacement of Histone H3 Variants Reprograms Epigenetic Marks in Early Mouse Embryos
Upon fertilization, reprogramming of gene expression is required for embryo development. This step is marked by DNA demethylation and changes in histone variant composition. However, little is known about the molecular mechanisms causing these changes and their impact on histone modifications. We examined the global deposition of the DNA replication-dependent histone H3.1 and H3.2 variants and ...
متن کاملFour amino acids guide the assembly or disassembly of Arabidopsis histone H3.3-containing nucleosomes.
The histone variant H3.3 and the canonical histone H3.1, which differ in only 4- to 5-aa positions, are coexpressed in complex multicellular eukaryotes from fly to human and plant. H3.3 is mainly associated with active chromatin by replacing H3.1 through chaperones such as histone regulator A, death domain associated protein DAXX, thalassemia/mental retardation syndrome X-linked homolog ATRX, o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 14 شماره
صفحات -
تاریخ انتشار 2012